

流砂河床変動の若手勉強会(札幌) 2019年8月25日

モデル駆動とデータ駆動の 協調による砂州の機構解明

新潟大学 安田 浩保

1

水面・底面の非接触同時計測 Data & Information Richの境遇を作る

1cm

CU

Camera 2

Ioving Carriage with ctric control (0-50cm/s)

YAG Laser

Camera 1

FION

空間解像度 時間解像度

数秒

PG:10点 ST: 40 x 1000 x 2 **従来法の104倍**

時空間的に高解像度な水表面と水底面の定量情報の取得が可能

移動床水理への適用性の検証

時空間的に高密度な計測が可能

本計測手法の計測精度

計測誤差は現象の最大波高の3%未満

水面
 底面の一意の対応関係
 (水路幅方向)

左岸からの距離 (cm)

底面と水深の変動幅の10²も異なり、水面の形状変化 は微細なものの、<mark>両者には対応関係がある</mark>。

平坦床より砂州河床はエネルギ損失は20%減少

流路幅方向のエネルギ集積度の階級が1σ以上に 全被災箇所の3/4が所属₅

洪水前の河川地形に基づき脆弱点が推定可能か

河道脆弱区間の推定・砂州地形 ロ交互砂州の形成を要因とした澪筋の偏心が河岸欠損等の被災 箇所と関係か?

流路の平面形状よりも交互砂州の形成を要因とした澪筋の 偏心が**河岸欠損等の被災箇所との関係性が示唆**

交互砂州の発達に従って流れが左右岸沿いに偏倚し、有効 無次元掃流力の**頻度分布は正規分布から乖離**

異分野融合型研究の推進

データ駆動解析による底面推定 ■ 劣化観測信号からの原信号復元

^{未知の元画像} 観測画像 復元画像 観測した水面からの河床状態推定に適用

従来の<mark>時不変を想定</mark>した復元問題では推定が困難 時間的な制約を加えた復元問題の<mark>新解法が不可欠</mark>

ータ駆動解析による底面推定 らてによる調評画 5日による説明を手 水表面の微小な起伏に基づく 底面起伏の推定する数理モデ

ル(DMD)の構築に成功

STEDMDO

時間的制約を加えた復元問題 スパース正則化付再帰型フィルタの構築

●1500点/m² (1点/2.5cm²)の計測密度の達成

●水面の3次元座標の計測に。成功

検証点の座標値の比較					水位計測結果の比較					
点名		X座標[m]	Y座標[m]	Z座標[m]	No.	TS 平均	σ	TS 平均	TS 平均	計測水位
<i>K</i> 1	理論値	42749.714	-69419.485	89.635	日時	2018年11月13日 15:06:40~15:09:46				15:16:30
	計測値	42749.724	-69419.542	89.606	1	89.04	0.022	89.08	88.99	88.98
	差分	-0.010	0.057	0.029	日時	2018年11月	13日 15:	: 25 : 51~15 : 29 : 05		15:37:30
K2	理論値	42742.352	-69411.674	89.248	2	88.99	0.035	89.06	88.92	89.09
	計測値	42742.360	-69411.719	89.198	日時	2018年11月13日 15:46:15~15:53:44 15:39				
	差分	-0.008	0.045	0.050	3	88.88	0.029	88.94	88.83	88.86

不動点の座標を確認:XY、Z座標共に約5cm以内の誤差:水面形状を十分な精度で計測可能
 水位:3地点中2地点で±2σ以内の計測結果:高精度な計測結果

科学の進歩は、 計算と観測が両輪

真実の一部しか見えない